Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Med Microbiol Immunol ; 212(1): 75-91, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2259680

ABSTRACT

Human cytomegalovirus (CMV) is a widespread persistent herpes virus requiring lifelong immune surveillance to maintain latency. Such long-term interactions with the immune system may be associated with deleterious effects including immune exhaustion and senescence. Regarding the COVID-19 pandemic, we asked whether CMV-specific cellular and humoral activity could influence immune responses toward SARS-CoV-2 and/or disease severity. All adults with mild (n = 15) and severe (n = 14) COVID-19 were seropositive for anti-CMV IgG, but negative for IgM antibodies. Antibody titers did not correlate with COVID-19 severity. Six patients presented elevated frequencies of CMV-specific CD4 + and CD8 + T cells producing IFNγ, IL-17, and TNFα, designated as CMV high responders (hiT CMV). In comparison to low CMV responders, hiT CMV individuals exhibited higher frequencies of SARS-CoV-2-specific CD4 + IL-17 + and CD8 + IFNγ + , IL-17 + or TNFα + T cells. These results indicate that high frequencies of CMV-specific T cells may be associated with a SARS-CoV-2-reactive profile skewed toward Th17-dominated immunity.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Adult , Humans , Tumor Necrosis Factor-alpha , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Interleukin-17 , Pandemics , CD8-Positive T-Lymphocytes , Antibodies, Viral
2.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1786112

ABSTRACT

Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.

3.
EBioMedicine ; 77: 103887, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1689314
4.
Immun Ageing ; 18(1): 41, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1506595
5.
Immun Ageing ; 18(1): 36, 2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1435255

ABSTRACT

The rapidity of SARS-CoV-2 vaccination around the world has substantially reduced the number of new cases of COVID-19 and their severity in highly vaccinated countries. The unanticipated efficacy of SARS-CoV-2 vaccines in older adults has been very encouraging but the longevity of vaccine immunity is currently unknown and protection against emerging variants may be lower. Adoptive immunotherapy with neutralizing mAb may offer an alternative for poor vaccine responders, while the mechanisms underlying failure to respond are still unclear. Further studies of B and T cell responses and their regulation particularly in older populations will provide a more solid foundation to develop suitable approaches to optimize vaccine responses of older adults who fail to mount a durable response.

6.
Signal Transduct Target Ther ; 6(1): 259, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1387233
7.
Immun Ageing ; 18(1): 7, 2021 Feb 17.
Article in English | MEDLINE | ID: covidwho-1088602

ABSTRACT

The rapidity with which vaccines against COVID-19 have been developed and tested is unprecedented. As classically the case with randomized clinical trials, many studies excluded older adults. However, given the early realisation that senior citizens were most highly susceptible to COVID, older individuals have been included in licensing trials under these unusual conditions. The recently published results from the Comirnaty Vaccine (BNT162b) trial unexpectedly documented that vaccine efficacy was equally exceptionally high in older and younger adults. These extremely encouraging trial results with a neoantigen vaccine may suggest the beginning of a paradigm shift in our view of the impact of immunosenescence on vaccination against novel infectious diseases.

8.
J Clin Transl Res ; 6(3): 92-93, 2020 Sep 05.
Article in English | MEDLINE | ID: covidwho-1017588
9.
Ageing Res Rev ; 65: 101205, 2021 01.
Article in English | MEDLINE | ID: covidwho-893601

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic was first reported in Wuhan, China in December 2019, moved across the globe at an unprecedented speed, and is having a profound and yet still unfolding health and socioeconomic impacts. SARS-CoV-2, a ß-coronavirus, is a highly contagious respiratory pathogen that causes a disease that has been termed the 2019 coronavirus disease (COVID-19). Clinical experience thus far indicates that COVID-19 is highly heterogeneous, ranging from being asymptomatic and mild to severe and causing death. Host factors including age, sex, and comorbid conditions are key determinants of disease severity and progression. Aging itself is a prominent risk factor for severe disease and death from COVID-19. We hypothesize that age-related decline and dysregulation of immune function, i.e., immunosenescence and inflammaging play a major role in contributing to heightened vulnerability to severe COVID-19 outcomes in older adults. Much remains to be learned about the immune responses to SARS-CoV-2 infection. We need to begin partitioning all immunological outcome data by age to better understand disease heterogeneity and aging. Such knowledge is critical not only for understanding of COVID-19 pathogenesis but also for COVID-19 vaccine development.


Subject(s)
COVID-19 , Coronavirus , Aged , Aging , COVID-19 Vaccines , China , Humans , Immunity , SARS-CoV-2
10.
Mech Ageing Dev ; 192: 111357, 2020 12.
Article in English | MEDLINE | ID: covidwho-773414

ABSTRACT

There is a great deal of debate on the question of whether or not we know what ageing is (Ref. Cohen et al., 2020). Here, we consider what we believe to be the especially confused and confusing case of the ageing of the human immune system, commonly referred to as "immunosenescence". But what exactly is meant by this term? It has been used loosely in the literature, resulting in a certain degree of confusion as to its definition and implications. Here, we argue that only those differences in immune parameters between younger and older adults that are associated in some definitive manner with detrimental health outcomes and/or impaired survival prospects should be classed as indicators of immunosenescence in the strictest sense of the word, and that in humans we know remarkably little about their identity. Such biomarkers of immunosenescence may nonetheless indicate beneficial effects in other contexts, consistent with the notion of antagonistic pleiotropy. Identifying what could be true immunosenescence in this respect requires examining: (1) what appears to correlate with age, though generality across human populations is not yet confirmed; (2) what clearly is part of a suite of canonical changes in the immune system that happen with age; (3) which subset of those changes accelerates rather than slows aging; and (4) all changes, potentially population-specific, that accelerate agig. This remains an immense challenge. These questions acquire an added urgency in the current SARS-CoV-2 pandemic, given the clearly greater susceptibility of older adults to COVID-19.


Subject(s)
COVID-19 , Immunosenescence , Pandemics , SARS-CoV-2/immunology , Adult , Aged , Biomarkers , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , COVID-19/therapy , Humans , Middle Aged
11.
F1000Res ; 92020.
Article in English | MEDLINE | ID: covidwho-627446

ABSTRACT

Seasonal influenza remains a major public health problem, responsible for hundreds of thousands of deaths every year, mostly of elderly people. Despite the wide availability of vaccines, there are multiple problems decreasing the effectiveness of vaccination programs. These include viral variability and hence the requirement to match strains by estimating which will become prevalent each season, problems associated with vaccine and adjuvant production, and the route of administration as well as the perceived lower vaccine efficiency in older adults. Clinical protection is still suboptimal for all of these reasons, and vaccine uptake remains too low in most countries. Efforts to improve the effectiveness of influenza vaccines include developing universal vaccines independent of the circulating strains in any particular season and stimulating cellular as well as humoral responses, especially in the elderly. This commentary assesses progress over the last 3 years towards achieving these aims. Since the beginning of 2020, an unprecedented international academic and industrial effort to develop effective vaccines against the new coronavirus SARS-CoV-2 has diverted attention away from influenza, but many of the lessons learned for the one will synergize with the other to mutual advantage. And, unlike the SARS-1 epidemic and, we hope, the SARS-CoV-2 pandemic, influenza will not be eliminated and thus efforts to improve influenza vaccines will remain of crucial importance.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections , Humans , Pandemics , Pneumonia, Viral , SARS-CoV-2
12.
Vaccines (Basel) ; 8(3)2020 Aug 07.
Article in English | MEDLINE | ID: covidwho-714027

ABSTRACT

As the current COVID-19 pandemic continues to rage worldwide, it has emerged that the 2019-2020 influenza season has been milder and shorter than usual in the northern hemisphere, presumably due to enforced social distancing [...].

13.
Immun Ageing ; 17: 8, 2020.
Article in English | MEDLINE | ID: covidwho-46397

ABSTRACT

The emergence of SARS-CoV-2 and its inordinately rapid spread is posing severe challenges to the wellbeing of millions of people worldwide, health care systems and the global economy. While many younger people experience no or mild symptoms on infection, older adults are highly susceptible to life-threatening respiratory and systemic conditions which demand a full understanding and leveraging of knowledge of the differences between immunity in young and old people. Consequently, we welcome papers addressing any issues relevant to immunity and ageing in the context of SARS-CoV-2, and will endeavour to fast-track peer-review. We aim to provide a platform exclusively for discussions of individual and age differences in susceptibility and immune responses to COVID caused by SARS-CoV-2 infection and how to prevent or reduce severity of disease in older adults.

SELECTION OF CITATIONS
SEARCH DETAIL